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Abstract. In this paper, optimality for multiobjective programming problems having invex objective
and constraint functions (with respect to the same function η) is considered. An equivalent vector
programming problem is constructed by a modification of the objective function. Furthermore, an η-
Lagrange function is introduced for a constructed multiobjective problem and modified saddle point
results are presented.
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1. Introduction

An important concept in mathematical models in economics, decision theory, op-
timal control, and game theory is that of a vector minimum or Pareto optimum. The
optimality conditions of Karush–Kuhn–Tucker type for a multiobjective program-
ming problem and the saddle points of its vector-valued Lagrangian function have
been studied by many authors (see, for example, [4, 8, 10, 13, 15, 17, 18, 21, 23],
and others). But in most of the studies, an assumption of convexity on the func-
tions involving was made. Recently, several new concepts concerning a generalized
convex function have been proposed. Among these, the concept of invexity has re-
ceived more attention [12]. A few authors intended the relevant results in the theory
of multiobjective optimization with this concept. For example, Egudo and Hanson
[9] have studied a multiobjective programming problem with Mond–Weir type and
Wolfe type duals for invex objective and quasi-invex constraint functions. Weir
[22] considered a multiobjective programming problem involving invex functions
and obtained Karush–Kuhn–Tucker type necessary and sufficient conditions for a
feasible point to be properly efficient.

The aim of the present paper is to show how one can obtain optimality condi-
tions for Pareto optimality by constructing for a considered multiobjective pro-
gramming problem an equivalent vector minimization problem and then using
an invexity concept in mathematical programming. The equivalent vector valued
problem is obtained by a modification the various objective functions in the given
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multiobjective programming problem at an arbitrary but fixed point x. This con-
struction depends heavily on results proved in this paper which connects the ef-
ficient points of the original vector minimization problem to the efficient points
of the modified multiobjective programming problem. In this way, we obtain a
multiobjective programming problem with the same optimality solutions and the
value optimality equal to zero. Furthermore, we introduce a definition of an η-
Lagrange function in such vector optimization problem, for which modified vector
valued saddle points results are presented.

2. Preliminaries

For any x = (x1, x2, ..., xn)
T , y = (y1, y2, ..., yn)

T , we define:

(i) x = y if and only if xi = yi for all i = 1, 2, ..., n;
(ii) x < y if and only if xi < yi for all i = 1, 2, ..., n;
(iii) x � y if and only if xi � yi for all i = 1, 2, ..., n;
(iv) x � y if and only if x � y and x �= y.

Throughout the paper, we will use the same notation for row and column vectors
when the interpretation is obvious.

We consider the multiobjective programming problem

V -minimize f (x) = (f1(x), ..., fk(x))

subject to gj (x) � 0, j = 1, ..., m,
(VP)

where f : X → Rk and g : X → Rm are differentiable functions on a nonempty
open set X ⊂ Rn. Note here that the symbol “V -minimize” stands for vector
minimization. Let

D := {
x ∈ X : gj (x) � 0, j = 1, ..., m

}
denote the set of all feasible solutions of (VP).

We define a Lagrange function for the original multiobjective problem (VP)

L(x, λ, ξ) := λT f (x) + ξT g(x).

For such optimization problems minimization means obtaining of efficient solu-
tions (Pareto optimal solutions) in the following sense [17]:

DEFINITION 1. A point x ∈ D is said to be an efficient (Pareto optimal) point
for (VP) if and only if there exists no x ∈ D such that

f (x) � f (x).

It is said to be a weak efficient (weak Pareto optimal) point for (VP) if and only if
there exists no x ∈ D such that

f (x) < f (x).
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Speaking roughly, a point x ∈ D is efficient (Pareto optimal) for a multiobjective
problem (VP) if and only if we can improve (in the sense of minimization) the
value of one of the objective functions only at the cost of making at least one of the
remaining objective functions worse; it is weak efficient (weak Pareto optimal) if
and only if we cannot improve further all of the objective functions simultaneously.

To prove various results in the paper we need certain optimality conditions
for the multiobjective problem (VP). Necessary optimality conditions a Karush–
Kuhn–Tucker type for the multiobjective problems, by using some regularity con-
ditions, were obtained, for example, by Craven [6], Giorgi and Guerraggio [11],
Kanniappan [15], Singh [19], Weir et al. [21]. Note that we are dealing with the
multiobjective problems in finite dimensional spaces only assuming that the in-
volved functions are differentiable. Therefore, we are using the following neces-
sary optimality conditions of Karush–Kuhn–Tucker type for a such multiobject-
ive programming under some constraint qualification (CQ) (for example, Linear
Independence Constraint Qualification [2]):

THEOREM 2. [19] Let x be an (weak) efficient point in (VP) and some constraint
qualification (CQ) holds for (VP). Then there exist λ ∈ Rk+ , λ �= 0 and ξ ∈ Rk+,
ξ � 0, such that

λ
T ∇f (x) + ξ

T ∇g (x) = 0, (1)

ξ
T
g (x) = 0. (2)

To make things easier, we consider the invexity and generalized invexity defin-
itions for vectorial functions, which coincide with those given in the scalar case
(see [12]).

DEFINITION 3. Let f : X → Rk be a differentiable function on a nonempty
open set X ⊂ Rn. Then, f is invex with respect to η at u ∈ X on X if, for all
x ∈ X, there exists η : X × X → Rn such that

f (x) − f (u) � ∇f (u)η (x, u) . (3)

If the inequality (3) holds for any u ∈ X then f is invex with respect to η on X.

DEFINITION 4. Let f : X → Rk be a differentiable function on a nonempty
open set X ⊂ Rn. Then, f is strictly invex with respect to η at u ∈ X on X if, for
all x ∈ X with x �= u, there exists η : X × X → Rn such that

f (x) − f (u) > ∇f (u)η (x, u) (4)

If the inequality (4) holds for any u ∈ X then f is strictly invex with respect to η

on X.
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DEFINITION 5. Let f : X → Rk be a differentiable function on a nonempty
open set X ⊂ Rn. Then, f is pseudo-invex with respect to η at u ∈ X on X if, for
all x ∈ X, there exists η : X × X → Rn such that

f (x) − f (u) < 0 �⇒ ∇f (u)η (x, u) < 0. (5)

If the inequality (5) holds for any u ∈ X then f is pseudo-invex with respect to η

on X.

DEFINITION 6. Let f : X → Rk be a differentiable function on a nonempty
open set X ⊂ Rn. Then, f is strictly pseudo-invex with respect to η at u ∈ X on X

if, for all x ∈ X, x �= u, there exists η : X × X → Rn such that

f (x) − f (u) � 0 �⇒ ∇f (u)η (x, u) < 0. (6)

DEFINITION 7. Let f : X → Rk be a differentiable function on a nonempty
open set X ⊂ Rn. Then, f is quasi-invex with respect to η at u ∈ X on X if, for all
x ∈ X, there exists η : X × X → Rn such that

f (x) − f (u) � 0 �⇒ ∇f (u)η (x, u) � 0. (7)

If the inequality (7) holds for any u ∈ X then f is quasi-invex with respect to η on
X.

It is clear that

invexity �⇒ pseudo-invexity �⇒ quasi-invexity. (8)

3. An equivalent multiobjective problem and optimality conditions

Let x be a feasible solution in (VP). We consider the following multiobjective
program (VPη(x)) given by

V -minimize
([

η (x, x)
]T ∇f1(x), ...,

[
η (x, x)

]T ∇fk(x)
)

subject to gj (x) � 0, j = 1, ..., m,
(VPη(x))

where f , g, X are defined as in (VP) and η is a vector-valued function defined as
η : D × D → Rn.

THEOREM 8. Let x be (weak) efficient in (VP) and (CQ) holds at x for (VP).
Further, we assume that g is invex with respect to η at x on D and η(x, x) = 0.
Then x is (weak) efficient in VPη(x).
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Proof. Since x is efficient in (VP) and (CQ) holds at x for (VP), then Karush–
Kuhn–Tucker conditions (1)–(2) are satisfied. We proceed by contradiction. Let x

not be efficient for (VPη(x)). This implies that there exists x̃ feasible for (VPη(x))
(and so to (VP)) such that[

η (̃x, x)
]T ∇fi(x) �

[
η (x, x)

]T ∇fi(x) for all i = 1, ..., k, (9)

[
η (̃x, x)

]T ∇fs(x) <
[
η (x, x)

]T ∇fs(x) for some s ∈ {1, ..., k}. (10)

From (9) and (10) together with assumption η (x, x) = 0, we get[
η (̃x, x)

]T ∇fi(x) � 0 for all i = 1, ..., k, (11)

[
η (̃x, x)

]T ∇fs(x) < 0 for some s ∈ {1, ..., k}. (12)

Since λ > 0, by (11), (12) we obtain

λT ∇f (x)η (̃x, x) < 0. (13)

A feasibility of x̃ together with ξ � 0 implies that ξT g (̃x) � 0. Hence by (2), it
follows that ξT g (x̃) � ξT g (x). By assumption, g is invex with respect to η at x

on D. Thus

ξT ∇g(x)η (x̃, x) � 0. (14)

Adding (13) and (14), we obtain the inequality[
λT ∇f (x) + ξT ∇g (x)

]
η (̃x, x) < 0,

which contradicts (1). Hence x is efficient in (VPη(x)).
Proof for weak efficiency is similar. �
THEOREM 9. Let x be a feasible point for (VPη(x)). Further, we assume that f

is invex with respect to η at x on D and η (x, x) = 0. If x is efficient in (VPη(x))
then x is also efficient in (VP).

Proof. We proceed by contradiction. Let x be no efficient in (VP). Then there
exists x̃ feasible for (VP) such that

fi (̃x) � fi(x) for all i = 1, ..., k, (15)

fs (̃x) < fs(x) for some s ∈ {1, ..., k}. (16)
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By assumption fi , i = 1, ..., k, are invex with respect to η at x on D. It follows
that they are also quasi-invex with respect to η at x on D. Therefore, (15) gives[

η (̃x, x)
]T ∇fi(x) � 0 for all i = 1, ..., k. (17)

Since fi , i = 1, ..., k, are invex with respect to η at x on D, it follows that they are
also pseudo-invex with respect to η at x on D. Therefore, (16) gives[

η (̃x, x)
]T ∇fs(x) < 0 for some s ∈ {1, ..., k}. (18)

By assumption, η (x, x) = 0. Hence from (17) together with (18) we obtain[
η (̃x, x)

]T ∇fi(x) �
[
η (x, x)

]T ∇fi(x) for all i = 1, ..., k, (19)

[
η (̃x, x)

]T ∇fs(x) <
[
η (x, x)

]T ∇fi(x) for some s ∈ {1, ..., k}, (20)

which contradicts that x is efficient in (VPη(x)). Hence the theorem is proved. �
In view of Theorem 8 and Theorem 9, if we assume that f and g are invex with
respect to the same function η at x on the set of feasible solutions D and η (x, x) =
0 then multiobjective programming problems (VP) and (VPη(x)) are equivalent in
the sense discussed above.

Now, we prove this theorem under the weakened assumption on the functions
involving. This follows from the proof of Theorem 9, in which, in fact, we used the
assumption of generalized invexity (that is, pseudo-invexity and quasi-invexity).
Therefore, we replace the invexity assumption of f by (pseudo-invexity) strict
pseudo-invexity to prove the relationship between (weak) efficient points of the
modified multiobjective problem (VPη(x)) and the original multiobjective problem
(VP).

THEOREM 10. Let x be a feasible point for (VPη(x)). Further, we assume that f

is (pseudo-invex) strictly pseudo-invex with respect to η at x on D and η (x, x) = 0.
If x is a (weak) efficient point in (VPη(x)) then x is also a (weak) efficient point in
(VP).

REMARK 11. If a function η : D × D → Rn (with respect to which f and
g are invex) is linear with respect to the first component and, moreover, g is a
linear function, then (VPη(x)) is a linear multiobjective programming problem.
Now we give an example of a multiobjective programming problem which by
using the approach discussed in this paper is transformed to a linear multiobjective
programming problem (VPη(x)).

EXAMPLE 12. We consider the following multiobjective programming problem

f (x) = (
1
3x3

1 − 1
2x

2
1 + 5x1 + 1

6 , 5x1 + ex2
) → min

g1 (x) = 1 − x1 � 0,
g2 (x) = 1 − x2 � 0.
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Note that x = (1, 1) is an efficient point in the considered problem. Further, it can
be proved that f and g are invex at x with respect to the same function η defined
by

η (x, u) =
[

x1−u1
5

x2−u2
eu2

]
.

Now using the approach discussed in the paper we construct the problem (VPη(x))
by transforming the objective function. Thus, we obtain a linear multiobjective
programming problem in the form

(x1 − 1, x1 + x2 − 2) → min
g1 (x) = 1 − x1 � 0,
g2 (x) = 1 − x2 � 0.

It is not difficult to see, that x = (1, 1) is also efficient in the above optimization
problem, that is, in the multiobjective optimization problem which is constructed
by a modification of the objective function in the original problem.

REMARK 13. The assumption that a function η satisfies the condition η (x, x) =
0 is essential to confirm the equivalency between the multiobjective programming
problems (VP) and (VPη(x)) in the sense discussed in the paper. In the example
below we show that in the case when this condition does not hold then we have no
equivalency between (VP) and (VPη(x)).

EXAMPLE 14. We consider the following multiobjective programming problem

f (x) = (
ln (x1) ,

√
x2

) → min
g1 (x) = 1 − x1 � 0,
g2 (x) = 1 − x2 � 0.

Note that x = (1, 1) is an efficient point in the considered problem. Further, it can
be proved that f and g are invex at x with respect to the same function η defined
by

η (x, u) =
[

1
2u1 − x1

−x2 − u2

]
.

For the considered multiobjective programming problem we construct the trans-
formed multiobjective programming problem (VPη(x)). We have(

1
2 − x1,−x2 − 1

) → min
g1 (x) = 1 − x1 � 0,
g2 (x) = 1 − x2 � 0.

But this multiobjective objective problem is unbounded on the set of feasible solu-
tions. Thus, the considered multiobjective programming problems are no equiva-
lent in the sense discussed in the paper.
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4. Saddle criteria

Now we introduce a definition of an η-Lagrange function for a multiobjective
programming problem (VPη(x)).

DEFINITION 15. An η-Lagrange function is said to be a Lagrange function for a
multiobjective programming problem (VPη(x))

Lη (x, ξ) : = [
η (x, x)

]T ∇f (x) + ξT g(x)

: =
([

η (x, x)
]T ∇f1(x) + ξT g(x), ...,

[
η (x, x)

]T ∇fk(x) + ξT g(x)
)

.

For a Lagrange function, some kinds of saddle points have been introduced, such
as those in [20]. Here, we give a new definition of a (Pareto) saddle point for the in-
troduced η-Lagrange function in a multiobjective programming problem (VPη(x)).

DEFINITION 16. A point
(
x, ξ

) ∈ D × Rm+ is said to be a (Pareto) saddle point
for the η-Lagrange function if

(i) Lη (x, ξ) � Lη

(
x, ξ

)
, ∀ξ ∈ Rm+,

(ii) Lη

(
x, ξ

)
≮ Lη

(
x, ξ

)
, ∀x ∈ D.

THEOREM 17. We assume that f is (invex) strictly invex with respect to η at x on
D with η (x, x) = 0 and some constraint qualification (CQ) holds at x for (VP). If(
x, ξ

)
is a saddle point for Lη, then x is a (weak) Pareto solution in (VP).

Proof. We assume that
(
x, ξ

)
is a saddle point for Lη. Then by i) we have[

η (x, x)
]T ∇f (x) + ξT g(x) �

[
η (x, x)

]T ∇f (x) + ξ
T
g(x), ∀ξ ∈ Rm

+ .

Since η (x, x) = 0, therefore

ξT g(x) � ξ
T
g(x), ∀ξ ∈ Rm

+ . (21)

We proceed by contradiction, that is, suppose that x is not a weak Pareto solution
in (VP). Then there exists x̃ ∈ D such that

f (̃x) < f (x) . (22)

Since x ∈ D and ξ ∈ Rm+ , then we have

ξ
T
g(x) � 0. (23)

In (21), let ξ = 0

ξ
T
g(x) � 0. (24)
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Hence, (23) together with (24) gives

ξ
T
g(x) = 0. (25)

Since f is invex with respect to η on D, then it is also pseudo-invex with respect
to the same function η on D. Hence by (22), it follows that[

η (̃x, x)
]T ∇f (x) < 0. (26)

Thus, by (25) and (26) and using the definition of Lη, we get

Lη

(̃
x, ξ

) = [
η (x̃, x)

]T ∇f (x) + ξ
T
g(̃x) <

[
η (x, x)

]T ∇f (x) + ξ
T
g(x)

= Lη

(
x, ξ

)
This contradicts ii), therefore, x is a weak Pareto solution in (VP).

The proof of efficiency is similar. �
Now we prove a converse theorem, that is, a sufficient condition for a point

(
x, ξ

) ∈
D × Rm+ to be a saddle point for the η-Lagrange function.

THEOREM 18. Let x be a (weak) Pareto solution in (VP) at which some con-
straint qualification (CQ) is satisfied. Further, we assume that f and g are invex
with respect to the same function η at x on D and η (x, x) = 0. Then there
exists ξ ∈ Rm+ , such that

(
x, ξ

)
is a saddle point for the η-Lagrange function in

a multiobjective programming problem (VPη(x)).

Proof. By assumption, x is a weak Pareto solution for (VP). Thus, by Theorem
2, it follows that Karush–Kuhn–Tucker conditions (1) and (2) hold. Not losing
generality of the considerations, we assume

∑k
i=1 λi = 1. Since g is invex with

respect to η at x on D and ξ ∈ Rm+ , it follows that the inequality

ξ
T
g(x) − ξ

T
g (x) � ξ

T ∇g (x) η (x, x)

holds for all x ∈ D. From (1)

ξ
T
g(x) − ξ

T
g (x) � −λ

T ∇f (x) η (x, x) .

By assumption η (x, x) = 0. Thus, the inequality

λ
T ∇f (x) η (x, x) + ξ

T
g(x) � λ

T ∇f (x) η (x, x) + ξ
T
g (x)

holds for all x ∈ D. Since λ ∈ Rk+\{0}, ∑k
i=1 λi = 1, and by the definition of the

η-Lagrange function, it follows that, for all x ∈ D

λ
T
Lη

(
x, ξ

)
� λ

T
Lη

(
x, ξ

)
.
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This means that, the relation

λ
T
Lη

(
x, ξ

)
≮ λ

T
Lη

(
x, ξ

)
(27)

holds for all x ∈ D.
By (2) and since x ∈ D, the inequality

ξT g (x) � ξ
T
g (x)

holds for any ξ ∈ Rm+ . Thus the inequality

[
η (x, x)

]T ∇f (x) + ξT g (x) �
[
η (x, x)

]T ∇f (x) + ξ
T
g (x) .

for all λ ∈ Rk+ and ξ ∈ Rm+ . This means, by the definition of η-Lagrange function,
that

Lη (x, ξ) � Lη

(
x, ξ

)
. (28)

Inequalities (27) and (28) mean that
(
x, ξ

)
is a saddle point for the η-Lagrange

function in a multiobjective programming problem (VPη(x)). �
In view of Theorem 17 and Theorem 18, we see that, if we assume that f is (invex)
strictly invex and g is also invex with respect to the same function η at x on D,
the method of a modified objective function guarantees the equivalency between
a (weak) Pareto solution in (VP) and a saddle point of the η-Lagrange function in
a modified multiobjective programming problem (VPη(x)) in the sense discussed
above.
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